EFFECT OF ROUGHNESS ON THE INTERACTION
BETWEEN LOW-DENSITY GAS AND THE - SURFACE OF A SOLID
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The effect of roughness on the reflection of molecules of a low-density gas from the surface
of a solid is studied. An expression is derived for the transform for a single reflection

from a homogeneous roughness which permits simple programming for a computer. A sim-
ple approximation to this expressionis considered which is applicable over a broad range of
roughness parameters and of gas-molecule angles of incidence. Based on this approximation,
the angular distributions of reflected molecules are calculated and a comparison is made with
similar distributions taken from [1].

The result of an interaction between molecules of a low-density gas and the surface of a solid for a
given incident velocity uy is characterized by a molecular density distribution F with respect to the re-
flected velocities u, (Fig. 1). Because of the roughness, reflection of molecules from the surface may occur
after one, two, or more collisions with microprojections. The quantity F is therefore conveniently repre-
sented in the form [1}

F=F,

n=\

where Fy, is the density distribution for molecules reflected after n-fold collisions with microprojections
{transform for n-fold reflections). Ordinarily, it is sufficient to know only the first term F; of this series
since molecules undergoing more than one collision adapt practically completely to surface conditions.

The problem of the effect of roughness on the structure of Fy (for a known law F; for the reflection of
molecules from an ideally smooth surface) has been discussed in the literature mainly in a simplified form
where the roughness was assumed slight (small slope variance otz) and isotropic, and the reflection law F,
was assumed specular. A more complete study of the structure of F; was given in{1], where the general
problem of reflection from a homogeneous isotropic surface was discussed and a simple approximation was
proposed for the case of normal slight roughness (o <5 0.3) and angles of incidence gy not close to 90°. The
asymptote of Fy for ¢; ~90° and ¢ —0 was discussed in [2]. In other cases, however, the solution obtained
in [1] is in extremely cumbersome formand hardly suitable for numerical calculations. In addition, it fails
to take the anisotropy of real surfaces into account.

In order, to obtain a more convenient general expression for F; which would also take into account
surface anisotropy, we consider the following method for determination of the desired transform.

Let a gas molecule undergo a single interaction with the surface of a solid; i.e., the following events
occur (Fig. 1): A) free flight of a molecule at a velocity u; along the ray MO from infinity to some point O;
B) interaction with the surface in the neighborhood of point O; C) the surface in the neighborhood of point
O is oriented with its normal within the elementary solid angle dwy = sin 63dgydeg; D) reflection from the
surface at a velocity u, in the interval du,; E) free flight along the ray ON from the point O to infinity.
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7 The desired transform is then found from the expression [1]

F”<!\ Fidu, = ZT {§ p(aBcoE) @

P 4 | N 2Zg=——00 Py tp
\”%/2/ where p(ABCDE) is the probability of the product of the events men-
] tioned above. The limits of integration with respect to the angles ¢,
“and gy are determined by the initial conditions and depend on the angles
©1s @9 61, and 5. In the approximation [1], they were assumed to be,
respectively, (0, 21) and (r/2, 7) for simplicity, but this limited the
region of applicability of the approximation to the angles ¢; = 105°.
Exact values of the limits can be found from geometric consideration
Fig. 1 of the problem,which leads after a number of transformations to the
following result:
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3 is determined by the expression for ! with replacement of the condition ¢4 > ¢ by @9 <@y and
o % 2 2
vice versa.

We now consider the function inside the integral sign in Eq.(1), assuming that the original surface is
a three-dimensional, anisotropic, differentiable random field £ (x, y). This function can be represented in
the form

p (ABCDE) = p (A) p (E| A) p (B1 AE) p (C| AEB)p (D | AEBC) 3)

where p(u|v) is the conditional probability for event y under the condition event v has occurred. Following
[1]1, we cut the surface by a dihedral angle having the vertex 0z and faces that pass through the rays MO
and ON. The stochastic function

' E(tcosqy, tsing) for <0
2= { E(tcosqy, tsing,) for ¢2>0
is then formed in the section.

Let f£(t) be a specified curve. We then introduce another function
Lo EO>10 )

8 —_
2 {o, £ E()<F)

and denote by S{t;, t;) an event where the function 6({t) = 0 in the interval (t;, t5); pp(t;, ty) is the probability
that the function 6 (t), being in the zero state at the time t;, changes its state n times by the time t,. Using
this notation, one can write
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Po(t1, £ -+ Af) = po(ty, ) — po (1, 1) Z‘ Pally t - AL S (8, 1) )

=1

Since the function ¢(t) is differentiable, the function 6(t) will be ordinary and in the small interval At

D Pults t 4 At S (8, 1)) = pult, ¢+ AL|S (s )] + 0(A8) =

t=sy
= d[£]S (o 1)] At +0(A) @

where d[t [S(t;, t)] is the conditional probability density for an excursion of £(t) through £(t) at the fime t
for the condition S(t{, t). Substituting Eq. (7) into Eq. (6}, we have

Doty £ AAZZ*PO B8 _ Potn, 1) {d 1] S (s )] + O (1)}

Letting At —0, we obtain a differential equation from which we find

iy

Po(tn 1) = exp{—§ d (2] (0 1)1 de} ®)

t1

In particular, if £ (t) is a Poisson process, d{t|S(t;, )] = d{), and Eq. (8) takes the form

)

1= oxp [~

“‘L,;

d(t) dt]

In the general case [3]

20

a1t 01 = § 017 (1, €] S (0w DIEO — D1 L) (9)

)

where the dots indicate differentiation with respect tot,and p[f(t), £(t)|S(t;, t)] is the conditional density of
‘the joint distribution of £(t) and i (t) for the value ¢(t) = f£(t) and the condition S(t;, t).

We now assume that the function f(t) describes the trajectory of a gas molecule, i.e.,

ro=s0+{ o IS 10)
Considering Eqs. (8)-(10), we then obtain
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We next consider the probability p(C|AEB). It is
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9, a° 30° where
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Transforming to the spherical coordinates g, and ¢, and

60" "~ )6,=90.378" remembering

5 0 D 45 60 F E.(0) = —tgBocos @y, E,(0) = — tg Bysinq,

Fig. 2 , we obtain

P(C1AEB) = {§ { 0 [£.(0), & (0)[ § (— o=, 0), $ 0, =), EO)] :ﬁ’;f;o a8y df x

P9 8o
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The region of integration for the angles g and ¢, in this equation agrees with that in Eq. (2). If the
function ¢ (x, y) is normal, '

P (8 (0), & (0)] S (— 00, 0), S(0, o0), E(0)] =p [£:(0) | S (— 20, 0), §(0, o0)] p [E,(0)] S (— 20, 0), §(0, 00)]  (15)

and Eq. (14) is correspondingly simplified.
Finally, the last factor in Eq. (3), the probability p(D|AEBC), has the form

p(D| AEBC) = Fydu, = Fyu,? du, sin 0,49, do, : (16)

where the reflection law Fy is assumed known.

Equations (1)~(4) and (10)-(16) completely define the transform Fy; however, it is still unsuitable for
numerical caleulations. The main difficulty is in the calculation of integrals such as

oo

= Jotr@. E0ISONE® —Ff®1dE @) an

G

where T is some interval preceding or following the time t. We use the following approximation to evaluate
such integrals. First, we limit the magnitude of T to the correlation interval Ti. This is permissible be-
cause by definition [4] any two sections of the stochastic function £(t) separated by an interval T > Ty can
be considered independent of one another. Second, we replace S(T) by the condition &(t) < f£(t) at a finite
number of points t; € T, i =1, ..., n. Without concerning ourselves about the optimal choice of these points,
we shall assume they are equidistant from one another,with the first point coinciding with the beginning of
the interval T and the last point coinciding with the end of the interval. The integral (17) is then written in
the form

I~ Sp[f(t),i(t)lS(tnz— b mlEE () — 7 (1 & () =
f(tll)m ) el
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—00

ti=ti—T(i—1)/(n—1), T<Ty i=1-=n

By making the number n sufficiently large, the error resulting from the replacement of Eq. (17) by
Eqg. (18) can be reduced to practically zero. Trial calculations indicate that the number n for actual sur-
faces ordinarily is no greater than 10 for a relative error of 10%. The case n =1,where the condition S(tj,
=1, ..., n) reduces toS(t;),is of particular interest. Rememberingthat the time t; directly precedes or
follows the time t, we then have
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If the function £ (t) is normal, pl£®) | £(t)] = p[£(t)] and Eq.
(19) is correspondingly simplified. Taking Eqs. (1), (3), (11)-
(17), and (19) into account, it is easy to obtain the following ex~
pression for the desired transform:
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and oxz, cry2, Utiz’ and Utzz are the variances of the slopes [i.e., the variances ofthe derivative £(t)] along
the x and y axes and in the direction of the flight of a molecule before and after collision with the surface.
Note that if the x and y axes coincide with the principal directions of the roughness, the variance of the
slopes in an arbitrary direction t is expressed through the variances ¢y* and Oyz by the relation [5]

6l=23 zco.s21p—|—suzsin21pr (21)

where ¢ is the angle between the direction t and the x axis.

Thus the desired transform is completely determined by assignment of the variances ze and U,yz
and by the initial angles of incidence ¢, and 6.

The approximation (19), (20) is applicable in those cases where the trajectory of the molecule satis-
fies one of the two conditions:

1) |f (t)/oy] = 2 (since for f(t)/ot ~2, the events S{tj, 1 =1, ..., n) and S(t;) occur simultaneously
with a probablhty close to one, and for f t)/at > 2, the integrals (18) and (19) are practically zero regard-
less of the events mentioned);

2) the angle of incidence g is close to 90° {since in this case the molecules would collide with the
7y
peaks of the roughnesses and integrals such as j‘ can be replaced by 5‘ - Actually, this means that for

— o

such incidence of the molecules the stochastic function ¢ (t) can be considered as a one~dimensional Pois-
son process which agrees with the theory of high-order excursions [6]).

Thus there is a very limited region |f(t)/ot| << 2 where the approximation (19), (20) leads to error.
If the roughness is slight, this region is small and has no practical effect on the calculation of integral
characteristics. Rough calculations have shown that in the case of severe roughness (gt < 1) an error of
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6, 20° o 30° 60 10% or less is introduced into such interaction charac-
teristics as the probability of single reflection and the

accommodation coefficients for momentum and energy.
In addition, the error mentioned tends to zero when

8; —~90°, and the approximation (19}, (20) becomes ap-

plicable for any roughness.

Figures 2-6 give computed results obta.ined from
Eq. (20) for cases where the reflection law Fy is specular
(Figs. 2-5) and diffuse (Fig. 6).

The first two figures show the dependence of the
quantity Fy on the vertical angle of incidence g for an
isotropic surface with variances ¢4’ = 0.01 (Fig. 2) and
otz =1 (Fig. 3). As is clear, the scattering curve bears
less resemblance to specular reflection as the variance
increases and begins to develop "spikes" in the direction
of the incident flux. In that case, the maximum spike is
observed for those particles which are incident on the
surface perpendicularly to the central line of the slope
of the roughness in the direction of incidence.

Figure 4 shows the effect of anisotropy on the trans-
form Fy. It shows the reflection curves with respect
to the azimuthal angles ¢, for the case of vertical incidence of particles on a weakly anisotropic surface
(ox/ oy = 1.2). For better visualization, the quantity Fy = Fy (85, ¢y is replaced by the expression

2n

Fo=Fy (8, 92) | {F1 (8 02)doy

> 0

It is clear that for the case of an isotropic surface (ox /o, =1) such a normalized transform should
be represented graphically by a perfect circle. As is clear from the figure, this circle begins fo elongate
along the direction of maximum variance when anisotropy appears,with the elongation becoming increasingly
greater as the angle g, increases. As the anisotropy increases, this elongation intensifies, and the quantity
F, for any angles g, » r/2 approaches a half~sum of d-functions: 0.5 [0 (@g) + 6 (@s=7)].

Similar relationships are also observed when the reflection law Fy is diffuse; however, the effect is
considerably weaker.

Figures 5 and 6, respectively, show a comparison of single reflection curves for specular and diffuse
reflection laws F; calculated from approximation (20) and from [1] (dashed line). For simplicity, the case
of a molecule vertically incident on an isotropic surface was selected. The quantity Fy was replaced by the
normalized expression

Fy = Fy (83, @) / F1 (0, @)

As is clear, divergence between the approximations begins at precisely those values of g¢ for which
the approximation in [1] becomes inapplicable.

Using Eq. (20), one can calculate the probability of single reflection, the accommodation coefficients
for momentum and energy, and other aerodynamic parameters.
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